

Mark Scheme (Results)

January 2021

Pearson Edexcel International Advanced Subsidiary In Physics (WPH13) Paper 1 Practical Skills in Physics I

Question	Answer	Mark
Number 1(a)	A measurement of distance travelled (1)	
Ι(α)	• A measurement of time taken (1)	
	 Appropriate measuring equipment for both, e.g. metre rule, stop clock, 	
	light gates (1)	
	$\bullet \text{See } s = ut + \frac{1}{2}at^2 \tag{1}$	
	• Repeat and calculate mean (1)	
	OR	
	• A measurement of distance travelled (1)	
	• A measurement of (initial and) final velocity (1)	
	• Appropriate measuring equipment for both, e.g. metre rule, stop clock,	
	ight gates	
	$\bullet \text{See } v^2 = u^2 + 2as \tag{1}$	
	Repeat and calculate mean	
	OR	
	• A measurement of (initial and) final velocity (1)	
	• A measurement of time taken (1)	
	• Appropriate measuring equipment for both, e.g. stop clock, light gates	
	• See $a = (v - u)/t$ (1)	
	• Repeat and calculate mean (1)	
	For MP4	5
	- accept correctly re-arranged versions	
	- accept gradient of a correctly described graph	
	- accept versions of equations where $u = 0$ has already been included.	
	e.g. $s = \frac{1}{2}at^2$	
	MP1-2 could be described for the falling mass, as acceleration is the same	
1 (b)(i)	• (0.98, 2.8) and (0.78, 2.4) plotted correctly (1)	
	• Straight line of best fit with a positive y-axis intercept	2
	Or curve of best fit (passing through origin) (1)	2
	$\begin{bmatrix} 3.0 \\ 2.5 \end{bmatrix}$	
	© 2.5 = 2.5 = 2.5	
	W 2.0	
	.ig 1.5ig 1.	
	$\frac{5}{8}$ 1.0 $\frac{1}{8}$ 0.5 $\frac{1}{8}$ 0.5	
	$\frac{3}{4} \frac{0.5}{0.0}$	
	0.00 0.50 1.00 0.00 0.50 1.00	
	Force / N Force / N	
1 (b)(ii)	• (Straight) line of best fit does not pass through the origin, so the	
	conclusion is correct	
	Or line of best fit is a curve, so the conclusion is correct	
	Or accept answer consistent with incorrectly drawn line in (b)(i) (1)	1
1(c)	Masses removed from the hanger are placed on the glider	
	Or masses removed from the glider are placed on the hanger (1)	1
	Total for question 1	9

Question Number	Answer		Mark
2(a)(i)	Normal drawn and critical angle indicated	(1)	1
2(a)(ii)	• Use of $\sin C = \frac{1}{n}$ with their measured value of C	(1)	
	• Refractive index = 1.58 to 1.70		
	Refractive fidex = 1.56 to 1.76	(1)	2
	C/° n		
	36 1.70		
	37 1.66		
	38 1.62		
	39 1.59		
	MP1 accept correct use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$, with $n_2 = 1$ and $\theta_2 = 90^\circ$		
	Example calculation		
	$C = 38^{\circ}$		
	$\sin 38^\circ = \frac{1}{\pi}$		
	n = 1.62		
2(b)	• Use of $\sin C = \frac{1}{n}$ with either 40.5° or 41.5°	(1)	
,	• Range of refractive index calculated	` '	
	Range of ferractive fildex calculated	(1)	2
	Example calculation		
	$\sin 40.5^{\circ} = \frac{1}{n}$		
	n = 1.54		
	$\sin 41.5^{\circ} = \frac{1}{2}$		
	$\sin 41.5^{\circ} = -\frac{1}{n}$		
	n = 1.51		
2(a)	$1.51 \le n \le 1.54$	(1)	
2 (c)	• Use of $n_1 \sin \theta_1 = n_2 \sin \theta_2$ • Refractive index = 1.53	(1) (1)	
	 Refractive index = 1.35 Comparative statement consistent with the range from (b) 	(1)	3
	Comparative statement consistent with the range from (b)	(-)	
	Example calculation		
	$\sin 64 = n \sin 36$		
0(1)	n = 1.53		
2 (d)	• The monochromatic light has a single wavelength/frequency	(1)	
	Or White light is a mixture/range of wavelengths/frequencies The different wavelengths/colours would refrect by different angles	(1)	
	• The different wavelengths/colours would refract by different angles Or different wavelengths/colours would have different refractive indexes	(1)	
	 Monochromatic light would give less uncertainty in the <u>angle</u> 	` /	
	(incident/refraction/critical)		_
	Or monochromatic light allows for a more accurate measurement of <u>angle</u>	(1)	3
2(e)	Angle resolution of 0.1° compared to protractor resolution of 1°	(1)	
\- /	Beam from the collimator is narrower (than the ray from a ray box)	(1)	
	• So, uncertainty in angle (of refraction) is smaller	(1)	3
	For MP1 – accept descriptions of protractor with resolution 0.5°		
	For MP3 – must be clear the uncertainty is for the angle measurement		1.4
	Total for question 2		14

Question Number	Answer		Mark
3(a)	 Diagram showing rubber band suspended/clamped at one end (e.g. hanging from a clamp stand) Force applied to band (e.g. slotted masses hanging on free end) Measure initial length using a ruler Or mark position of bottom of band on ruler Measure new length/position and calculate extension Additional detail to improve accuracy e.g. method for reducing parallax Or additional detail to improve safety e.g. ensure feet are not under the masses in case they fall MP2-5 could be awarded for information shown on the diagram (e.g. metre rule and set squares seen on the diagram). Allow MP3 and 4 for set-up where 0 on metre rule is aligned with end of band before masses are added, to measure extension directly. 	(1) (1) (1) (1)	5
3(b)	 Estimates the area inside the loop by counting squares Or estimates the area inside the loop by using simple shapes Calculates the energy of each square Or calculates the energy for one shape Energy transferred = 0.85 to 1.00 J MP1 and 2 Accept calculation of area under both curves which are then subtracted Example calculation 77 squares counted Energy of 1 square = 0.5 N × 0.025 m = 0.0125 J Energy transferred = 77 × 0.0125 J = 0.96 J 	(1) (1) (1)	3
	Total for question 3		8

Question Number	Answer		Mark
4(a)	• Percentage uncertainty = 2.4% (accept 2%, 2.38%, 2.381%) Example Calculation Percentage uncertainty = $\frac{0.25}{10.5} \times 100\%$ Percentage uncertainty = 2.4%	(1)	1
4(b)	 Max 3 from (Percentage) uncertainty will be reduced The multimeter screen/display will not cause a parallax error The multimeter can measure to a higher resolution Or the multimeter resolution can be increased by changing the setting Or the multimeter measures to 2 d.p. The digital multimeter will not require interpolation of values 	(1) (1) (1) (1)	3
	Total for question 4		4

Question Number	Answer	Mark
5(a)	 Inconsistent number of decimal places for resistance Or resistance should be to 3 d.p. (to match ohmmeter resolution) Inconsistent intervals in temperature)
	Or large jump in temperature from 38 to 55 °C (1	2
5(b)	 Labels axes with quantities and units Sensible scales Plotting Line of best fit 	2)
	0.36 0.35 0.34 0.33 0.32 Cl 0.31 0.29 0.28 0.29	
5(c)	• Extends line to y-axis intercept • Correct R_0 for the line drawn • Calculates gradient using large triangle • Use of gradient = αR_0 • $\alpha = 4.0 \times 10^{-3}$ to 4.2×10^{-3} (°C ⁻¹) • Value of α to 2 or 3 sig fig and with correct units °C ⁻¹ For MP5 – accept a correct calculation using the given value for R_0 and gradient.))))
	For MP1 – 5 accept calculation of <i>y</i> -axis intercept using gradient or use of simultaneous equations for 2 pairs of points on the line. Example calculation Gradient = $(0.348-0.282) / (70-10) = 0.0011 \Omega ^{\circ}C^{-1}$ $\alpha = \text{gradient} / R_0 = 0.0011 / 0.271 = 4.1 \times 10^{-3} ^{\circ}C^{-1}$	

5(d)	 Realistic modification suggested Explains how this improves the accuracy of the values 	2
	• Explains how this improves the accuracy of the values (1	4
	Examples	
	 Take a resistance measurement at 0 °C to measure R₀ accurately 	
	 Take resistance measurements for lower temperatures to improve the accuracy of the gradient Or to improve the accuracy of the y-axis intercept 	
	 Take resistance measurements for smaller increments of temperature to improve the accuracy of the gradient Or to improve the accuracy of the y-axis intercept 	
	 Take resistance measurements for a wider range of temperatures to improve the accuracy of the gradient Or to improve the accuracy of the y-axis intercept 	
	 Stir the water regularly Or place the thermometer inside the copper coil so the temperature of water plotted is the same as the temperature of the copper 	
	 Use a datalogger to measure temperature and resistance so that the values are recorded simultaneously 	
	 Use a digital thermometer to avoid parallax error 	
	Ignore higher resolution for a digital thermometer.	
	Total for question 5	15